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AN OPTIMAL ALGORITHM FOR F INDING THE KERNEL OF A POLYGON

D. T. Lee and F. P. Preparata

I University of Illinois at Urbana-Champaign

Abstract

The kernel K(P) of a simple polygon P with n vertices is the locus of

the points internal to P from which all vertices of P are visible.

Equivalently, K(P) is the intersection of appropriate half-planes determined

by the polygo&s edges. Although the intersection of n generic half-

planes is known to require time 0(nlogn), we show that one can exploit

the ordering of the half-planes corresponding to the sequence of the

polygon ’s edges to obtain a kernel f ind ing algor ithm which runs in time

1 0(n) and is therefore optimal.
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I: AN OPTIMA L ALGORITHM FOR FINDI NG THE KERNE L OF A POLYGON*

D. T. Lee and F. P. Preparata

Coordinated Science Laboratory
University of Illinois
Urbana , Illinois 61801

I
1. The kernel K(P) of a simple polygon P is the locus of the points

I ~ internal to p which can be joined to every vertex of P by a segment totally

contained in P. Equivalently, if one considers the boundary of P as a

counterclockwise directed cycle , the kernel of P is the intersection of all

I the half-planes lying to the left of the polygon’s edges.

Shamos and Hoey [i) have presented an algorithm for finding the kernel
U,
I of an n-edge polygon in time O(nlogn). Their algorithm is based on the fact

that the intersection of n generic half-planes can be found in time 0(nlogn);

they also show that O(nlogn) is a lower-bound to the time for finding the

intersection of n half-planes. However, this lower-bound does not apply to -:

the problem of f ind ing the kernel , since in the latter case the half-planes

I are ordered according to the sequence of the edges of P, nor does their

algorithm take advantage of this order. In this note we shall show that,

I. indeed , this ordering can be exploited to yield an algorithm which runs in

I time linear in the number of the edges. Obviously, since each edge must be

examined, the time of our algorithm is optimal within a multiplicative

I constant.

2. It is obvious that the kernel of the polygon P, being the inter-

L section of half-planes , is a convex polygon K(P). We shall denote P by a

doubly-linked list of vertices and intervening edges as v0e0v1e1. . .v~~1e~ _1v0.

I * This work was supported by the National Science Foundation under Grant
NSF MCS 76-17321 and by the Joint Services Electronics Program under Contract
DAAB-07-72-C-0259.
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F We also impose a direction upon each edge such that the interior of the

polygon lies to the left of the edge, or , equivalently, the boundary

of p is directed counterclockwise. A vertex v~ is called reflex if the

angle formed by its two adjacent edges e~~1 and e
~ 

meeting at v~ is greater

than 17 , and it is called convex otherwise.

The algorithm we shall outline scans in order the vertices of p and

constructs a sequence of polygonal chains K
0
,K1,...,K 1’ called kernel chains.

Each of these chains is a sequence of portions of straight lines, whose f irst

and last members are half-lines and all others are line segments. As we shall

show , the polygonal chain K
1 
bounds the intersection of the appropriate half-

planes de termined by e0, e1,...,e1. Due to convexity , the angle between two

.4 consecutive edges of a kernel chain is always < rr. Notationally , if points

w and w belong to the line containing the edge e of F, then w a w
i 1+1 Si i s i i+

denotes the segment between w1 and w and directed like e ; moreover,i+l Sj

A denotes a point at infinity and , for example , ttew denotes a half line

terminating at vertex w and directed like edge e.

1f F  has no reflex ver tex , then P is convex and K(P) =p . Thus

let v
0 

be a reflex vertex of P. Referring to figure 1, we set K,,~ equal

to the intersection of the half-planes lying to the le f t  of edges en_ l and

e
0
. Notationally, K0 will be represented by the string of symbols

• A e0 v0 e~~1 A . 
For each K

i 
it will be convenient to distinguish two vertices ,

F
i 

and L
1, 

which delimi t the sequence of vertices of K
i 

which are visib le

L from v~ ; these two vertices play , as we shall see, a very important role

in the construction of Kj+1 from K
1
. Obviously, in K0 we have F0 

— L0 
v0. J

I L  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ --~~~~~~~~ -•-
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F igure 1. Illustration of kernel chain K0

We now develop the advancing mechanism of the algorithm, i.e., the

process of constructing (Kj+1. Fi+l, Lj÷1) from (K
~
, F~ L

i
). For later

ease of reference, it is convenient to distinguish a hierarchy of different

cases.

( 1) v~ is reflex (see figures 2a and b ) .  In this case L1 lies on

or to the left of the half line v
~
e
~~1

A and , obvious ly, L
1÷1

4- L
1
. Candidates

for F
i÷i 

are only points belonging to the subchain delimited by F
1 

and L
1
.

We now examine where the segment v1÷1F1 lies with respect to Ae1 v~~1.

(1.1) v
1+1

F
1 

lies to the right of Ae1 v~~1 (figure 2a). We scan the

(a) (b)

[ Figure 2 - Advanc ing mechanism when v~ is reflex .
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kernel sequence counterlockwise from F
1, 

until we find a kernel vertex w~ on

or to the left of Ae1 v~~1
. If no such vertex exists, then the kernel

4 
is empty. Otherwise we can determine a unique point w’ as the intersection

of the segment wtw~~i 
and Ae . v~~1 

and set Fj+l .- w ’. Next we scan the

kernel sequence clockwise from F . un t i l  we find a point w ” , intersection

of M1 
v1~ 1 and some segment W

s
W:_ l ~ 

The n if K . = 

~~s~~~~t-l~ ’ 
where

c~ and ~ 
are sequences of alternating edges and vertices , we set K1+1 

=

cyw”e1w ’~~.

(1.2) vj+1
Fi lies ot the left of Ae~ v~~1 (figure 2b). Let

w ,  W~~~1
,... IW

+ 
be the sequence of the kernel vertices between F~ and

with w — F~ and w
~~ 

= L~. Let denote the angle measured counter-

clockwise from the segment W
j
v j +l (directed from W

j  
to v

~+1
) to ei. We

successively examine the angles ;‘ ~~~~~~~~~ 
until we find some w~~,,

(0 
~ 

p ~ r), such that ~
‘I - ~~~ 

is minimal. Notice that since K~ is a

convex polygon, only w ,  ~~~~~~~~~~~~~ w .~~÷1 
need to be examined to

find w5~~
. We then set Fj+i i- w~~, and Ki+l ~

- K1.

I. •1
(2) v~ is convex (see figures 3a,b,c,d). In this case Fi 

lies

I on or to the left  of the half—line Ae~ ..,1 v
.,. To determine Lj+l, we

distinguish whether the vertex L~ lies to the left of v~
ei

A or not.

(2.1) L1 lies 
on or to the right of v1e1A (figures 3a ,b). We scan

the kerne l sequence K~ clockwise from L1 until we determine a unique 
r

1! segment w~w~~1 such that w~ and we_ i lie , respectively , to the righ t

and to the left of v~e1A : 
we can then determine the intersection point

w’of w
~
w
~~1 

and v1e~A. We must distinguish where v 1.+1 lies with respect

I to it ’ . Let K1 — 

- - - - - -~~~~~~ .- --~~.--~
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(2.1.1) v
~÷1

E w ’e1A (f
igure 3a). Clearly L

i+i 
4- v~~1 and

Fi+1 ~
- w ’ ; also , we obtain Kj+i — 

~ w ’ eivj+1ejA .

1.

e
j /\  

~~~~~~~~~~~~~~~~~~~~~~~~

(a) (b)

/‘ 

/~~~~~~~~ 
\
‘ 

e~~ /
’
~~~~~~~~~~l

~ 

(c) (d)

I 
- Figure 3. Advancing mechanism when v~ is convex. 
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(2 .1 .2)  v .+1 E v ie jw ’ ( f i gu r e 3b). Let 
~Yj 

denote the counter-

clockwise angle from the directed segment w . v .  to e . .  If w . . .w
1 s s+r

is the sequence of kernel vertices from F . to L
~
, then we successively

exanine the ang les ‘
~~~‘ ~s+1’~~~ ’ 

until we find a minimal -

~
,‘

~~~~~~~~
• We then

set ~ w ’ , F.+1 4- w ,~~~, and —

1’ (2.2) L~ Lies to the left of v.e .A (figures 3c ,d). Let K .

~L.e’~\. We determine the’ intersection w ’ of Le’A and v~e .A.

(2.2.1) v
~+i

E w ’~~.~\ (figure 3c). In this case , we set

L.+i 
4- v~~ 1, F.~~1 4- w ’ and K .+1 — c~L.e ’w ’ejv.~~1

e .A.

(2.2.2) v1+1E vj
ejw ’ (figure 3d). In this case , Fj÷i is

determined exactly as in the corresponding case described in (2.1.2)

(figure 3b ) whereas L.~~1 
4- w ’ and K .+l — 

~L.e ’w ’e .A.

In all of the above cases, it is immediate to realize that Kj+i ~~

the intersection of K . and of the haLf-p lane to the left of e .
1

Usi ng th e advancing mechanism described above, we ultimately

obtain the kerne l chain K 1, which , if K(P) is nonempty , is nonsimple

(see figure 4), i.e., it has a crossing point w. Our remaining task is

finding w. Let K~_ 1 = Ae~w1ej... wme
’A. We scan the edge sequence of

Kn_l~ 
starting from e~ , and at the i-th step, for i � 2, we check whether

lies to the left of the line containing e ’ , directed like e~. Let s

be the smallest value of i for which w1 
lies to the right of el. Next

we scan the vertex sequence (w1
w2...) until we reach a vertex Wr~ 

such

that wr_l and lie on opposite side of e’. At this point we check

whether e ’ and e ’
1 

intersect~ if they do, their intersection is the

sought w; otherwise we replace w1 with W
r 
and continue the process

(repeating the alternate scanning of the edge sequence and vertex
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sequence ) unt i l  the intersection is found .

e’
w 0

—

ci
w2 - 

-

e’ 1 v

~~~~~~~~~~~~~~~ 

\W
l

Figure 4. Findtng K(P) from

3. We now analyze the performance of the algorithm outlined

above.

In case (1.1) we scan Ki 
starting from F1, 

both counterclockwise

and clockwise , and let V j be the total number 
of edges visited before

finding the two intersections w ’ and w”• This process actually removes

- 2 edges from K1 
(those compr ised between w9 and w

~~1 
in figure 2a~

and since each of the removed edges is colinear with a distinct edge of

F, the total number of vertices visited by the algorithm in handling

case (1.1) is at most 0(n).

v$ In case (1.2), we scan K1 counterclockwise 
starting from ~~ and

clearly (p41) is the total number of vertices visited before we find ~~~~

But in this process the distinguished point “F” has advanced p positions
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( f r om F . w to F. = w ) counterclockwise. Since the number of
1 S 1+1 S+~

vertices of any K~ is at most 0(a), and the point “F” can only advance

on kernel chains, we conclude that the total number of vertices visited

by the algorithm in handling case (1.2) is at most 0(n).

In case (2.1) the intersection w ’ of v .e~I\ and w
~
w
~~i 

involves

scanning K1 
clockwise from L.. Let be the total number of edges

visited before finding w ’. This process actually removes 
~~~

. edges from

K1 (those comprised between w~ and \) .  Here again, since each of the

removed edges is colinear with a distinct edge of F, the total member

of vertices visited by the algorithm in finding w ’ in case (2.1) is at

most 0(n).

Case (2.1.1) requires a constant amount of work. Case (2.1.2)

requires globally an a~,ount of work at most 0(n), by an argument identical

to that developed for case (1.2).

The discussion of cases (2.2), (2.2.1), and (2.2.2) is exactly

analogous to that of (2.!), (2.1.1), ~nd (2.1.2), respectively.

F inal ly,  it is straightforward to realize that finding the inter-

sectioQ w in Kn_l requires at most 0(n) operations.

In sunniary, we conclude that finding the kernel of a simple

polygon runs in time 0(n), which is clearly optimal within a factor.
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